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Abstract 

Robust  control  theory is applied to analyzing a class of adaptive feedforward algorithms 
for cancelling sinusoidal noise. This  approach differs significantly from more  accepted 
methods of adaptive  analysis using Hyperstability, Lyapunov functions, etc.,  and  has  certain 
advantages when studying properties of robust  stability. A case study is given where the 
structured singular value is applied to analyzing the difficult but well-known problem for 
adaptive noise cancellation which arises when there is a plant resonance blocking the noise 
cancellation path. 

1 Introduction 

Robust  control  theory is applied to analyzing a class of adaptive feedforward algorithms for 
cancelling sinusoidal noise. This  approach is  valid for an idealized (and somewhat restric- 
tive) situation where the noise being cancelled is assumed to have the form of a sinusoidal 
sum, as opposed to  the more typical case of a correlated random noise process. However, 
sinusoidal noise arises  in a reasonable  range of applications (e.g., rotating machines, cry- 
ocoolers, rotocraft,  etc.)  and  the  method offers intuition  into  robust  stability which is 
not  presently possible using more conventional methods of adaptive  analysis  (e.g.,  such as  
Hyperstability, and Lyapunov methods). 

The  robustness  analysis is based on a recently derived decomposition of an adaptive 
algorithm  with a sinusoidal regressor into  the parallel connection of an LTI block and a 
norm-bounded LTV block. This  resulting LTI/LTV decomposition leads naturally  to a 
robustness analysis formulation  where  the LTI block  is interpreted as the  nominal control 
law, the LTV block is thought of as an  “additive  perturbation” to  the LTI block, and 
where additional blocks can  be  added to represent the uncertainties  in the  plant,  actuators, 
sensors, etc.. 
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A case study is given to  demonstrate  the method  on a difficult problem for which no 
alternative  method of analysis is available, i.e., the problem of adaptive noise cancellation 
when there is a plant resonance blocking the noise cancellation path, and when there is 
multiplicative  uncertainty in the  plant description. 

2 Harmonic Noise Suppression 

2.1 Formulation 

A general formulation of the  harmonic suppression  problem is  shown in  Figure 2.1. The 
basic problem is to suppress  the  harmonic  disturbance signal y of the form, 

by controlling an associated  error  signal e to zero. In a large  number of applications  the 

The filter P ( s )  in (2.2) is a known or partially known stable  transfer  function which  blocks 
the  error  path. Here, y^ is an  estimate of y which is generated as a linear  combination of 
the elements of the regressor vector x ,  i.e., 

Q = w  T x (2.3) 

and  the  parameter vector w is tuned using some adaptation mechanism,  such as the ones 
to  be considered later  in  this  paper.  The  adaptive controller is denoted by the  operator 'H 
in Figure 2.1. As shown, 'H is an  operator which maps the  error e into  the  estimate Q ,  i.e., 

y^ = 'H[e] (2-4) 

Simply stated,  the goal of the  adaptive controller 'H is to provide  high  gain at  the 
disturbance frequencies in y so as to minimize the effect of y on the  plant  output e. 

3 Adaptive Systems with Harmonic  Regressors 

The specific class of 3-1 to  be  studied  in  this  paper is shown in Figure 3.1. Here, an estimate 
y^ of the  disturbance signal y is constructed as a linear  combination of the elements of the 
regressor vector ~ ( t )  E RN,  i.e., 

Estimated Signal 
y^ = w(t)%(t) 
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Figure 2.1: Robustness analysis of adaptive noise cancelling 

where w(t) E RN is a parameter vector which  is tuned  in  real-time using the  adaptation 
algorithm , 

Here, the  notation r(p)[.] is used to denote  the multivariable LTI transfer  function r(s) - I 
where r(s) is any LTI transfer  function  in the Laplace s operator  (the differential operator 
p will replace the Laplace operator s in all time-domain  filtering  expressions); the  term 
e(t) E R1 is an  error signal; p > 0 is an  adaptation gain; and  the signal Z is obtained by 
filtering the regressor x through  any  stable  filter F ( p ) ,  i.e., 

Regressor Filtering 
5 = F(P)[XI (3.3) 

The  notation  F(p)[-] denotes the multivariable LTI transfer  function F(s) I with SISO 
filter F(s), acting  on  the indicated vector time domain signal. 

For the purposes of this  paper,  it will be assumed that  the regressor x can  be  written as 
a linear  combination of m distinct  sinusoidal  components {wi}gl, 0 < w1 < w2 < ... < wm, 
where the frequencies have been ordered by size from  smallest to largest. Equivalently, it 
is assumed that  there exists a matrix X E RNxlrn such that, 

Harmonic Regressor 
x = Xc(t) 

c(t) = [sin(wlt),  cos(wlt), ..., sin(w,t>, cos(wmt)lT E R~~ (3.5) 

Equations (3.1)-(3.5) taken  together will be referred to as a harmonic adaptive system. 
Collectively, these  equations define the open-loop mapping 'H in  Figure 3.1 which will be 
used throughout  this  paper. 
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Figure 3.1: LTV operator y^ = N[e] for adaptive  system  with  harmonic regressor 5, adap- 
tation law I'(s), and regressor filter F ( s )  

3.1 LTI/LTV Decomposition 

Let D2 E be defined as a matrix of the pairwise diagonal  form, 

dl2 . 12x2 0 . . .  0 
0 

0 
0 . . .  0 d,2-12x2 

d i 2  2 0 , i  = 1, .... m, 12x2 E R2x2.  Let X be defined as in (3.4), and define the  perturbation 
A as the deviation of X T X  from the pairwise diagonal matrix D2, i.e., 

A G X T X - D ~  (3.7) 

Then  it is  shown in [3][1] that  the mapping 'FI in Figure 3.1 can  be expressed as the 
parallel  connection of an LTI block x ( s ) ,  and  an LTV block d, Le., 

- 
N : Q = H ( p ) e  + &e] ( 3 4  

LTI Block 

F R ( ~ )  Re(F( jw;) ) ;  Fz(i) 4 I m ( F ( j w i ) )  (3.11) 

If the  adaptation law r(s) is stable with infinity norm 1lr(s)lloo, then  the induced 2-norm 
gain  (denoted by I I 112;)) of the LTV perturbation can be bounded  from  above as, 
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Bound on LTV Block 

Remarks 

As might be expected, the LTI transfer function N ( s )  is a function of the  disturbance 
tone frequencies w;, i = 1, ..., m, the regressor filter F(s ) ,  the  adaptive law I’(s), and  the 
diagonal elements of D2.  

Intuitively, the A matrix in (3.7) depicts how far away the  quantity X T X  is from some 
(arbitrarily specified) pairwise diagonal matrix D2.  This in turn determines the size of 
the LTV perturbation in (3.12), i.e., how far away the mapping  is from a purely LTI 
representation H(s) .  

If X T X  = D2, the “X-Orthogonality” (XO) condition is said to hold [1][2]. Under 
the X 0  condition, A = 0 and  it follows from (3.12) that  the LTV  block vanishes and  the 
adaptive  mapping is purely LTI. Interestingly, it has been shown in [1][2] that  the X 0  
condition is also necessary for the LTI property. 

The decomposition is  only unique for a specified  choice of D2,  i.e., different  choices of D2 
lead to different LTI/LTV blocks in the representation. The choice of D2 which  minimizes 
the LTV part (in a  certain  bound-optimal sense), can  be found by  solving a related Linear 
Matrix Inequality (LMI) [4]. 

The need  for Ilr(s)l l o o  to exist in the bound (3.12) requires that  the  adaptive law contain 
a “leakage” type  term  to bound the  adaptive gain. This is not expected to  be restrictive 
since a small leakage term is commonly added in implementations. 

If the  disturbance frequencies are known, the regressor can be chosen as 2 = c( t )  where 
c( t )  has the paired  sin/cos  form given in (3.5). In this case X = I and  the X 0  condition is 
satisfied by design, exactly. 

In the more practical  situation where the disturbance frequencies are unknown, it is 
difficult to satisfy the X 0  condition exactly.  Nevertheless, it is still possible (for example 
by using a tap-delay line) to construct a regressor  which nearly satisfies the X 0  condition. 
In this case the  adaptive system is representable as an LTI  block with a comparatively 
small LTV additive  perturbation  and can be conveniently analyzed as such within a modern 
robust control framework. 

5 



3.2 Tap-Delay  Line  Regressors 

The  theory described  in previous sections is now specialized to  the case where the com- 
ponents of the regressor z = [zl, ..., z ~ ] ~  E RN are defined by filtering a signal ( ( t )  E R1 
through a tap delay line  with N taps  and  tap delay T ,  i.e., 

where the measured  signal ( is given by the following sum of m sinusoids, 
m 

( ( t )  = a; sin(w;t + 4;); a; > 0 
i=l  

(3.14) 

It will further  be assumed that  the frequencies {w;}zl lie in a bounded tone  set R(m, T ,  E )  
defined next. 

DEFINITION 3.1 Given  time  delay T and  spacing  parameter 0 < < 7r/2, a  Bounded 
Tone  Set R(m,T,g) is  defined  as  any  set of m frequencies {u;}zl, such  that, 

{ w i } g ,  : 0 < g < 7r/2; 

This definition says that  the  set of frequencies {w;}gl are bounded away from 0, 7r/T 
and each other, with minimum spacing parameter g. 

The TDL regressor (3.13) can be  written  in  the  standard form x = X c ( t )  (cf., [l][4]). 
Let D2 be defined as follows, 

0 
0 I E R2mx2m 

Applying D2 from (3.16) in  the LTI/LTV decomposition (3.8) gives, 

LTI/LTV Decomposition  for TDL Regressor 

(3.16) 

(3.17) 
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Normalizing the  adaptive gain to p = i i /N  in (3.9), and using (3.16) yields, 

LTI Block 

(3.18) 

where Hi(s) has been defined earlier  in (3.10). 

Bound on LTV Block 

11Li112i I P ~ V ( A > I I ~ ( ~ ) I I ~ ~ ~ , W  I F ( W ) I  (3.19) 

In addition, the following upper  bound  on A has been proved in [1][4] in  terms of the 
minimal  spacing parameter E ,  

(3.20) 

Substituting (3.20) into (3.19) gives a useful alternative  but somewhat more conservative 
bound, 

(3.21) 

As might be  expected,  the  bound  on  the LTV perturbation A in (3.21) depends  on  the 
number of taps N ,  the minimum spacing parameter > 0, the number of disturbance tones 
m, the  disturbance  tone  magnitudes amaz, and choice of filter F(s )  and  adaptive law r(s). 

According to (3.21)) the size of the LTV block decays as 1/N, and hence the system 
approaches a pure LTI block asymptotically as the number of taps N becomes large. This is 
a notable  property,  because in this case the regressor has been constructed  without explicit 
knowledge of the  disturbance  tone frequencies beforehand. Of course this  result  assumes 
a minimum spacing between tones of E.  If this spacing decreases, it follows from (3.21) 
that N must  be  increased  in  proportion to l /g to achieve the same value for the LTV 
norm-bound. 

For convenience, the LTI/LTV decomposition of an adaptive  system  having a TDL 
regressor is summarized  in  Figure 3.2. Specifically, Figure 3.2 Part a. shows the  harmonic 
adaptive  system  with  TDL basis and normalized adaptation gain p = p / N ;  Part b. shows 
the equivalent decomposition into an LTI block and a norm bounded LTV perturbation 
block. 
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LTV Block x 

Figure 3.2: LTI/LTV decomposition of for harmonic adaptive system  with TDL basis 
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4 Robust ness Analysis 

The configuration for robustness  analysis  has been depicted  earlier  in  Figure 2.1. It will be 
discussed in more detail below. 

4.1 Plant Model 

Let the  plant P ( s )  be given as, 

where p(s) is a specified nominal  transfer  function,  and AM denotes a norm-bounded 
multiplicative plant  uncertainty, 

I I A M ( S ) ~ I O O  5 1 (4.23) 

4.2 Controller Model 

By the LTI/LTV decomposition, the  adaptive controller can be  written as, 

'FI : = ZT(p)e + &e] (4.24) 

Here, g ( s )  is the LTI block  given in (3.10)) and  the A is the LTV block. The LTV  block 
can be  further decomposed as, 

A = WAAA (4.25) 

where WA is a scalar constant given by the RHS of (3.12)) and AA is an LTV operator 
whose induced 2-norm is bounded by unity, i.e., 

4.3 Nominal Stability 

Setting AM = AA = 0 the  characteristic  equation of the closed-loop system shown in 
Figure 2.1 is  given  by, 

1 + P ( s ) F ( s )  = 0 (4.27) 

The nominal  system is internally  stable if p ( s )  and R ( s )  are  both  stable  separately,  and 
the  roots of the  characteristic  equation (4.27) are  in  the open LHP [lo]. 
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4.4 Nominal Performance 

Setting AM = AA = 0, the closed-loop transfer function from the noise input y to the 
output  error e is  given  by, 

(4.28) 

Due to  the form of the adaptive control p ( s )  given in (3.9),(3.10), there will be notches 
in this  transfer  function in the vicinity of the  disturbance  tone frequencies. The  depth of 
these notches indicates performance in terms of disturbance  attenuation. 

4.5 Robust Stability 

For analysis of robust  stability, the  adaptive system shown in Figure 2.1 is put  into  standard 
M - A form, 

(4.29) 

(4.31) 

Assume that nominal stability is satisfied. Then using the small gain theorem [6][14] 
and the fact that 1 1  AI 12i 5 1, a sufficient condition for robust Lz stability is given by, 

I I W 4 I ~  < 1 (4.32) 

This is equivalent to  the condition, 

~ ( M ( j u ) )  < 1 for all w (4.33) 

This  test involves the maximum singular value of M at each frequency.  However,  be- 
cause the uncertainty  in (4.31) is structured with two  blocks, a less conservative sufficient 
condition for robust  stability is given as, 

p L , ( M ( j w ) )  < 1 for all w (4.34) 

where pL, denotes the structured  singular  value computed with respect to  the 2x2 diagonal 
matrix A given in (4.31) (cf., [7]). 

Unfortunately, since the  operator AA is LTV, standard p theory does not  strictly apply. 
However, it is shown in Appendix A that for the present application, (4.34) can still be 
interpreted as a sufficient condition for robust  stability in the weaker sense of La. 
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5 Case Study 

The  robustness analysis described above can be applied to a wide variety of adaptive 
algorithms  and regressor choices. The  cme  study will focus on the commonly used  Filtered- 
X algorithm [15][9][8] [5] [16] specialized to having a leakage modification and a tap-delay-line 
regressor. 

5.1 Set-Up 

Filtered-X  Algorithm  with Leakage 

TDL  Regressor 

Applying the LTI/LTV decomposition gives, 

LTI Block for TDL  Regressor 

- - m FR( i ) (S  + a )  + FZ(i)Wi 

s2 + 2as + (a2 + a?) 2 i=l 
H ( s )  "CYi' * (5.7) 

F R ( ~ )  = Re(F(jw;)); Fz(i) 2 Im(F(jw;)) A 

Bound  on LTV Block for TDL Regressor 

The filter F ( s )  of the FX algorithm will be chosen equal to the nominal plant model, 
1.e., 

F ( s )  = B(s) (5.10) 
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Plant 
P ( s )  = B(s)(l + W M ( + M ( S ) )  (5.11) 

(5.12) 

(5.13) 

(5.15) 

up = bp = 2?r(20); Cp = .l; wp = 2 ~ ( 3 0 )  CM = 2 ~ ( 5 0 )  (5.16) 

The nominal  plant  transfer  function is shown in  Figure  5.1, and  the multiplicative 
uncertainty is shown in  Figure 5.2. 
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Figure 5.1:  Nominal plant 
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Multiplicative  Uncertainty WM 

Freq (Hz) 

Figure 5.2: Multiplicative uncertainty W.M(S) 

5.2 Case Study 1 

Parameter values are chosen as follows: w1 = 27r(12),w2 = 27r(24), cy1 = cy2 = 1, p = 20, c = 
,001, T = .01; N = 50. 

The controller additive  uncertainty can be calculated with the aid of formula (3.12) to 

(5.17) 

One of the main reasons that (5.17) is so small is that, as shown  in Figure 5.3, there  are deep 
minima of a(A)/N at particuIar choices of N .  The choice N = 50 used here is exactly at a 
minimum,  and such a choice in practice would require prior knowledge of the  disturbance 
frequencies. The use of such minimizing values of N and T for systematic design purposes 
was first advocated in Elliott et. al. [8]. 

In the more  practical case where the disturbances are unknown, and N is not in a 
local minimum, then N will generally have to be chosen  significantly larger to  ensure  that 
z(A)/N remains small. This  situation will be  treated in more detail in Case 2. 

The LTI block H ( s )  of the  adaptive controller is shown in Figure 5.4. The large gains 
at the  disturbance frequencies are clearly discernable. The nominal loop gain a ( s ) p ( s )  is 
shown as a Nyquist plot in  Figure 5.5 and (blown up) in Figure 5.6, and as a Bode plot in 
Figure 5.7. 

It can be verified from either the root locations or the Nyquist plot that  the nominal 
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sigm(Delta)/N vows number of taps 
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AdaDtive Controller: LTI B b c k  Hbar 
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Figure 5.4: Case 1: LTI block g ( s )  of adaptive controller 
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Nvauist Dlot. Nominal Loop Gain Hbar'Phat 

R e a l  Axis 

Figure 5.5: Case 1: Nyquist plot of nominal loop gain a ( s ) p ( s )  

3" 

* Nyquist plot *, True Loop Gain H*P 
I I I I I t I 

\ 
\ 
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\ 
\ 

Figure 5.6: Case 1: Nyquist plot (blow up) of nominal loop gain g ( s ) p ( s )  
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Nominal Loop Gain HbaFPhal 

10' 1 o2 

Figure 5.7: Case 1: Bode plot of nominal loop gain p ( s ) p ( s )  

system is stable.  The nominal  performance is plotted in Figure 5.8 as the  transfer function 
G ( S ) ~  from  disturbances y to  the  plant  output e. The steep  notches  indicate an impressive 
40 - 50 db of attenuation for both  disturbance tones. 

The  structured  singular value is plotted  in  Figure 5.9. It is  less than  unity  demonstrating 
that  the  adaptive  system  in  this case is stable. 

5.3 Case Study 2 

As shown in  Figure 5.3 the choice of N = 50 in Case 1 was  very fortuitous  in giving a small 
WA. It is deduced  from the relation shown in  Figure 5.3, that N would have to  be upwards 
of 5,000,000 to give the same WA if one  did not have sufficient a-priori  information  about 
the  disturbance frequencies to choose N at a local minimum. Clearly, this is too large a 
number of taps  to implement  in  practice. 

One can try  to offset needing such a large N by lowering WA in  other ways. For this 
case study,  the value of u is increased two orders of magnitude for this  purpose.  These two 
orders of magnitude effectively reduce the requirement on N from 5,000,000  to 50,000. 

The  actual number used will be N = 50,010 to make the problem challenging by 
ensuring that we are not at a local minimum. This is still  quite  large, and underscores the 
need for better basis  functions than TDLs for this class of problems. Parameters for the 
present  Case 2 are  the same as Case 1 except for the choice of N and 6.  
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Nominal Performance Phatl(1 +Hbar.Phat) 
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Figure 5.8: Case 1: Performance  transfer  function G ( s ) ~ ~  

Structured Singular Value of M 
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Figure 5.9: Case 1: Structured singular value p ( M ( s ) )  
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Parameter values are chosen as follows: wl = 27r(12),wz = 27r(24), cy1 = a2 = 1, - p = 20,a = .1, T = .01; N = 50010. 

The controller additive  uncertainty  can  be  calculated  with  the  aid of formula (3.12) to 

WA = .033357 (5.18) 
give, 

The  adaptive controller p ( s )  is shown in  Figure 5.10 The nominal loop gain E ( s ) p ( s )  
is shown as a Nyquist plot  in  Figure 5.11 and (blown up) in Figure 5.12, and as a Bode 
plot  in  Figure 5.13. 

Adaptive Controller: LTI E k c k  Hbar 

Figure 5.10: Case 2: LTI  block g ( s )  of adaptive controller 

It  can  be verified from  either the root locations or the Nyquist plot that the nominal 
system is stable. The nominal  performance is plotted  in  Figure 5.14 as the  transfer function 
from disturbance  inputs  to  the  plant  output.  The notches indicate  approximately 30 db of 
attenuation for each of the two disturbance tones. This performance is not as impressive 
as for Case 1, due  predominantly to  the increased leakage parameter a which induces a 
significantly shallower notch according to (5.7). 

The  structured  singular value is plotted  in  Figure 5.15. It is less than  unity demon- 
strating  that  the  adaptive system  in  this case is stable. 

In summary, when N and T are chosen without  prior knowledge of the disturbance 
tones, the value for W A  can  be  quite large. Case Study 2 demonstrates  the use of leakage 
to decrease the size of W A ,  rather  than requiring an unrealistically large  number of taps. 
The number of taps required, however,  is still  large  and  indicates the need for a better 
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Nyquist plot, Nominal Loop Gain HbafPhat 
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Figure 5.11: Case 2: Nyquist plot of nominal loop gain g ( s ) p ( s )  
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Figure 5.12: Case 2: Nyquist plot (blow up) of nominal loop gain r ( s ) p ( s )  
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Figure 5.13: Case 2: Bode plot of nominal loop gain x ( s )  
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Figure 5.14: Case 2: Performance  transfer  function G ( s ) ~ ~  
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Figure 5.15: Case 2: Structured singular value p ( M ( s ) )  

regressor basis than using a TDL. 

5.4 Case Study 3 

This case extends  Case  2 by showing what  happens when the  disturbances  are shifted to 
higher frequencies into a region where there is more plant uncertainty. Specifically, the 
disturbance  tones  are now taken as, 

~1 = 2~(13);  ~2 = 2~(28)  (5.19) 

As seen from  Figure 5.2, the 28 Hertz tone is starting  to impinge on  the region where the 
multiplicative  uncertainty is unity. 

Parameter values are chosen as follows: w1 = 2~(13) ,  w2 = 2~(28) ,  a1 = a2 = 1, 
- p = 20, Q = .l, T = .01; N = 50010. 

The controller additive  uncertainty  can  be  calculated  with  the  aid of formula (3.12) to 
give, 

WA = .020896 (5.20) 

The  adaptive controller H ( s )  is shown in Figure 5.16. The nominal loop gain E ( s ) p ( s )  is 
shown as a Nyquist plot  in  Figure 5.17 and (blown up)  in Figure 5.18, and as a Bode plot 
in Figure 5.19. 
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Adaotive  Controller: LTI B b c k  Hbar 

Figure 5.16: Case 3: LTI block r ( s )  of adaptive controller 
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Figure 5.17: Case 3: Nyquist plot of nominal loop gain p ( s ) F ( s )  

22 



Nyquist plot, Nominal Loop Gain HbaPPhal 
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Figure 5.18: Case 3: Nyquist plot (blow up) of nominal loop gain f T ( S ) p ( 3 )  
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Figure 5.19: Case 3: Bode plot of nominal loop gain z ( s ) p ( s )  
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It  can  be verified from either the root locations or the Nyquist plot that  the nominal 
system is stable.  The nominal performance is plotted in Figure 5.20 as the  transfer function 
from disturbance  inputs  to  the  plant  output.  The notches indicate  approximately 30 db of 
attenuation for both  disturbance  tones, similar to Case 2. 

Nominal Performance  Phall(1 +Hbar.Phat) 

Figure 5.20: Case 3: Performance transfer  function G ( s ) ~  

The  structured singular value  is plotted in Figure 5.21. It is seen that  it becomes larger 
than  unity in the vicinity of the 28 Hertz disturbance  tone. Since the mu condition (4.34) is 
only sufficient, it cannot  be concluded that  the system will be  unstable. However,  consider 
the specific perturbation, 

- 2s WMAM = - 
3 + CM 

(5.21) 

which can be shown to satisfy the multiplicative bound (5.12), and  in addition  let AA = 0. 
With  this choice, the  actual loop gain is shown in the Nyquist plot  Figure 5.22, and blown 
up  in  Figure 5.23. The encirclement of the critical point indicates that  the system is indeed 
unstable  under  this class of perturbations. 

In summary, Case Study 3 demonstrates that  there may be a need to prefilter the signal 
to avoid  cancelling disturbance tones in regions of large plant  uncertainty. 
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Figure 5.21: Case 3: Structured singular value p ( M ( s ) )  
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Figure 5.22: Case 3: Nyquist plot of actual loop gain p ( s ) P ( s )  
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Figure 5.23: Case 3: Nyquist plot (blow up) of actual loop gain p ( s ) P ( s )  

6 Conclusions 

Using a recently developed LTI/LTV decomposition, a robust  control  theory framework 
was  developed to analyze a class of adaptive feedforward algorithms for cancelling sinu- 
soidal noise. Sufficient conditions for robust  stability in L2 were established in terms of 
the  structured singular value. A case study was presented,  analyzing  adaptive noise can- 
cellation in the presence of a plant resonance blocking the noise cancellation path.  The 
analysis allowed  for a nonminimum-phase resonance in the  plant, a multiplicative  error in 
the  plant  description, and additive  error in the control model corresponding to using an 
overparametrized  regressor. The case study gave significant insight  into several properties 
of nominal  performance and robust  stability. 

A potential  drawback  to using the method in practice is that a separate mu analysis 
must be performed for each combination of disturbance  tone  amplitude  and frequency value, 
i.e., cy;,  wi,  i = 1, ..., m. This can lead to a large  combinatorial  problem. However, out of 
fairness, it is important  to realize that  this difficulty is intrinsic to  the problem at hand 
rather  than any method used to analyze it.  The expressions for g ( s )  and WA (and hence 
stability  properties),  are  dependent on the disturbance  amplitudes and frequencies. Any 
stability  test which does not explicitly take  these  into  account,  cannot  properly  discriminate 
stable from unstable configurations. 
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Fruitful  areas for future investigation  include simplifying the mu tests,  examining  robust 
performance  properties,  and finding improved basis functions which  converge faster  than 
1/N to the X 0  condition. 
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A Appendix: Mu for Mixed LTI/LTV Uncertainty 

This  appendix is included to show that for the block diagram  in  Figure 2.1 having a 
single LTV perturbation AA, and a single LTI perturbation AM, the mu condition (4.34) 
is a sufficient condition for robust  stability in sense of L2. This  appendix  represents a 
simplification of existing  results  on LTV perturbations found in Shamma [13], Poolla  and 
Tikku [12] and Packard [ll], and  no claim is made  to originality. It is included only to 
make the paper  more  readable and self-contained. 

The  perturbation  operator, 

is identical to a rescaled perturbation  operator, 

where, 

since dl (s )  is an LTI transfer  function which commutes with the LTI operator AM, and d2 

is a scalar  constant which commutes  with the LTV operator AA. 
Using (A.2))  the equivalent small-gain  condition on M for  robust L2 stability can be 

calculated as, 
~~VMV-qm < 1 (A.4) 

or in terms of maximum  singular values, 

Since condition  (A.5) is  sufficient for any choice of V ,  it can be  made less conservative 
by optimizing over V as follows, 
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Here, it is emphasized that  the optimization is constrained so that dz is a  scalar  constant. 

However, (A.6) is equivalent to  the more general unconstrained optimization problem, 

where d2(s) is  now treated as a full LTI transfer  function, to  be optimized over along with 
d , ( j w ) .  Although not at first obvious, the equivalence of (A.7) and (A.6) can be seen  by 
reparametrizing d l ,  d2 as follows, 

dl = a ( j w ) ;  dz = a ( j U ) p ( j w )  ( A 4  
for some a ( j w )  > 0, and p ( j w )  > 0. Substituting (A.8) into (A.7) and  expanding gives, 

It is emphasized that  the RHS of (A.9) is not a function of a ( j w )  and hence not a function 
of dz ( jw) .  Accordingly, d2 can be  arbitrarily assigned (for example as the  constant d2 = 1) 
without changing the outcome of the optimization. 

At this  point it is noted  that A for the present application only involves 2 blocks.  For 
2 blocks, the  standard  mu measure p., is known to be equivalent to [lo], 

(A.lO) 

Accordingly, the  robust L z  stability conditions (A.7) can be  written equivalently in 
terms of the mu  measure (A.lO) as follows, 

p , ( M ( j w ) )  < 1 for all w (A. l l )  

In summary, even though mu theory is not  strictly applicable to LTV perturbations, 
when one applies the small gain theorem to this application (a 2-block problem with a 
single  LTV perturbation) one arrives at the mu condition (A.ll) as a sufficient condition 
to ensure  robust L2 stability. The main practical point of this derivation is that standard 
software for calculating p can now be applied. 

The necessity of condition ( A . l l )  is more subtle  and requires the notion of the rate-of- 
variation of the LTV operator. For more details the reader is referred to [13][12]. 

The above derivation is also valid  for 3 uncertainty blocks with one being LTV and 
two  being  LTI.  Hence the mu condition (A.ll) can still be used  for studying  adaptive 
feedforward systems when  an  additional  uncertainty block  is added. The  additional block 
can be very handy, being used to model actuator/sensor  uncertainties,  or any other LTI 
perturbations  occurring  in  the  adaptive loop. 

With four or more uncertainty blocks (i.e., assuming only one is LTV), the mu condition 
(A. l l )  is no longer sufficient, and the more general unconstrained optimization (A.7) must 
be solved. This  optimization problem is easier to  compute than  mu,  and in fact is often 
used as an approximation (i.e., strictly speaking an overbound) to p in practice [lo]. 
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